Saturday, September 27, 2008

Global Warming - Global Warning


Global warming is the increase in the average measured temperature of the Earth's near-surface air and oceans since the mid-20th century, and its projected continuation.

The average global air temperature near the Earth's surface increased 0.74 ± 0.18 °C (1.33 ± 0.32 °F) during the 100 years ending in 2005.[1] The Intergovernmental Panel on Climate Change (IPCC) concludes "most of the observed increase in globally averaged temperatures since the mid-twentieth century is very likely due to the observed increase in anthropogenic (man-made) greenhouse gas concentrations"[1] via an enhanced greenhouse effect. Natural phenomena such as solar variation combined with volcanoes probably had a small warming effect from pre-industrial times to 1950 and a small cooling effect from 1950 onward.[2][3]

These basic conclusions have been endorsed by at least 30 scientific societies and academies of science,[4] including all of the national academies of science of the major industrialized countries.[5][6][7] While individual scientists have voiced disagreement with some findings of the IPCC,[8] the overwhelming majority of scientists working on climate change agree with the IPCC's main conclusions.[9][10]

Climate model projections summarized by the IPCC indicate that average global surface temperature will likely rise a further 1.1 to 6.4 °C (2.0 to 11.5 °F) during the twenty-first century.[1] This range of values results from the use of differing scenarios of future greenhouse gas emissions as well as models with differing climate sensitivity. Although most studies focus on the period up to 2100, warming and sea level rise are expected to continue for more than a thousand years even if greenhouse gas levels are stabilized. The delay in reaching equilibrium is a result of the large heat capacity of the oceans.[1]

Increasing global temperature is expected to cause sea levels to rise, an increase in the intensity of extreme weather events, and significant changes to the amount and pattern of precipitation, likely leading to an expanse of tropical areas and increased pace of desertification. Other expected effects of global warming include changes in agricultural yields, modifications of trade routes, glacier retreat, mass species extinctions and increases in the ranges of disease vectors.

Remaining scientific uncertainties include the amount of warming expected in the future, and how warming and related changes will vary from region to region around the globe. Most national governments have signed and ratified the Kyoto Protocol aimed at reducing greenhouse gas emissions, but there is ongoing political and public debate worldwide regarding what, if any, action should be taken to reduce or reverse future warming or to adapt to its expected consequences

Causes

Components of the current radiative forcing as estimated by the IPCC Fourth Assessment Report.Main articles: Attribution of recent climate change and Scientific opinion on climate change
The Earth's climate changes in response to external forcing, including variations in its orbit around the Sun (orbital forcing),[15][16][17] changes in solar luminosity, volcanic eruptions,[18] and atmospheric greenhouse gas concentrations. The detailed causes of the recent warming remain an active field of research, but the scientific consensus[19][20] is that the increase in atmospheric greenhouse gases due to human activity caused most of the warming observed since the start of the industrial era. This attribution is clearest for the most recent 50 years, for which the most detailed data are available. Some other hypotheses departing from the consensus view have been suggested to explain most of the temperature increase. One such hypothesis proposes that warming may be the result of variations in solar activity.[21][22][23]

None of the effects of forcing are instantaneous. The thermal inertia of the Earth's oceans and slow responses of other indirect effects mean that the Earth's current climate is not in equilibrium with the forcing imposed. Climate commitment studies indicate that even if greenhouse gases were stabilized at 2000 levels, a further warming of about 0.5 °C (0.9 °F) would still occur.[24]


Greenhouse gases in the atmosphere
Main articles: Greenhouse gas and Greenhouse effect
The greenhouse effect was discovered by Joseph Fourier in 1824 and was first investigated quantitatively by Svante Arrhenius in 1896. It is the process by which absorption and emission of infrared radiation by atmospheric gases warm a planet's lower atmosphere and surface.


Recent increases in atmospheric carbon dioxide (CO2). The monthly CO2 measurements display small seasonal oscillations in an overall yearly uptrend; each year's maximum is reached during the Northern Hemisphere's late spring, and declines during the Northern Hemisphere growing season as plants remove some CO2 from the atmosphere.Existence of the greenhouse effect as such is not disputed. Naturally occurring greenhouse gases have a mean warming effect of about 33 °C (59 °F), without which Earth would be uninhabitable.[25][26] On Earth, the major greenhouse gases are water vapor, which causes about 36–70 percent of the greenhouse effect (not including clouds); carbon dioxide (CO2), which causes 9–26 percent; methane (CH4), which causes 4–9 percent; and ozone, which causes 3–7 percent.[27][28] The issue is how the strength of the greenhouse effect changes when human activity increases the atmospheric concentrations of some greenhouse gases.

Human activity since the industrial revolution has increased the concentration of various greenhouse gases, leading to increased radiative forcing from CO2, methane, tropospheric ozone, CFCs and nitrous oxide. Molecule for molecule, methane is a more effective greenhouse gas than carbon dioxide, but its concentration is much smaller so that its total radiative forcing is only about a fourth of that from carbon dioxide. Some other naturally occurring gases contribute small fractions of the greenhouse effect; one of these, nitrous oxide (N2O), is increasing in concentration owing to human activity such as agriculture. The atmospheric concentrations of CO2 and CH4 have increased by 31% and 149% respectively since the beginning of the industrial revolution in the mid-1700s. These levels are considerably higher than at any time during the last 650,000 years, the period for which reliable data has been extracted from ice cores.[29] From less direct geological evidence it is believed that CO2 values this high were last attained 20 million years ago.[30] Fossil fuel burning has produced approximately three-quarters of the increase in CO2 from human activity over the past 20 years. Most of the rest is due to land-use change, in particular deforestation.[31]

The present atmospheric concentration of CO2 is about 385 parts per million (ppm) by volume.[32] Future CO2 levels are expected to rise due to ongoing burning of fossil fuels and land-use change. The rate of rise will depend on uncertain economic, sociological, technological, and natural developments, but may be ultimately limited by the availability of fossil fuels. The IPCC Special Report on Emissions Scenarios gives a wide range of future CO2 scenarios, ranging from 541 to 970 ppm by the year 2100.[33] Fossil fuel reserves are sufficient to reach this level and continue emissions past 2100, if coal, tar sands or methane clathrates are extensively used.[34]


Feedbacks
Main article: Effects of global warming
The effects of forcing agents on the climate are complicated by various feedback processes.

One of the most pronounced feedback effects relates to the evaporation of water. Warming by the addition of long-lived greenhouse gases such as CO2 will cause more water to evaporate into the atmosphere. Since water vapor is a greenhouse gas, the atmosphere warms further; this warming causes more water vapor to evaporate (a positive feedback), and so on until other processes stop the feedback loop. The result is a much larger greenhouse effect than that due to CO2 alone. Although this feedback process causes an increase in the absolute moisture content of the air, the relative humidity stays nearly constant or even decreases slightly because the air is warmer.[35] This feedback effect can only be reversed slowly as CO2 has a long average atmospheric lifetime.

Feedback effects due to clouds are an area of ongoing research. Seen from below, clouds emit infrared radiation back to the surface, and so exert a warming effect; seen from above, clouds reflect sunlight and emit infrared radiation to space, and so exert a cooling effect. Whether the net effect is warming or cooling depends on details such as the type and altitude of the cloud. These details are difficult to represent in climate models, in part because clouds are much smaller than the spacing between points on the computational grids of climate models.[35]


Northern Hemisphere ice trends


Southern Hemisphere ice trends.A subtler feedback process relates to changes in the lapse rate as the atmosphere warms. The atmosphere's temperature decreases with height in the troposphere. Since emission of infrared radiation varies with the fourth power of temperature, longwave radiation emitted from the upper atmosphere is less than that emitted from the lower atmosphere. Most of the radiation emitted from the upper atmosphere escapes to space, while most of the radiation emitted from the lower atmosphere is re-absorbed by the surface or the atmosphere. Thus, the strength of the greenhouse effect depends on the atmosphere's rate of temperature decrease with height: if the rate of temperature decrease is greater the greenhouse effect will be stronger, and if the rate of temperature decrease is smaller then the greenhouse effect will be weaker. Both theory and climate models indicate that warming will reduce the decrease of temperature with height, producing a negative lapse rate feedback that weakens the greenhouse effect. Measurements of the rate of temperature change with height are very sensitive to small errors in observations, making it difficult to establish whether the models agree with observations.[36]

Another important feedback process is ice-albedo feedback.[37] When global temperatures increase, ice near the poles melts at an increasing rate. As the ice melts, land or open water takes its place. Both land and open water are on average less reflective than ice, and thus absorb more solar radiation. This causes more warming, which in turn causes more melting, and this cycle continues.

Positive feedback due to release of CO2 and CH4 from thawing permafrost, such as the frozen peat bogs in Siberia, is an additional mechanism that could contribute to warming.[38] Similarly a massive release of CH4 from methane clathrates in the ocean could cause rapid warming, according to the clathrate gun hypothesis.

The ocean's ability to sequester carbon is expected to decline as it warms. This is because the resulting low nutrient levels of the mesopelagic zone (about 200 to 1000 m depth) limits the growth of diatoms in favor of smaller phytoplankton that are poorer biological pumps of carbon.[39]


Solar variation

Solar variation over the last thirty years.Main article: Solar variation
A few papers suggest that the Sun's contribution may have been underestimated. Two researchers at Duke University, Bruce West and Nicola Scafetta, have estimated that the Sun may have contributed about 45–50 percent of the increase in the average global surface temperature over the period 1900–2000, and about 25–35 percent between 1980 and 2000.[40] A paper by Peter Stott and other researchers suggests that climate models overestimate the relative effect of greenhouse gases compared to solar forcing; they also suggest that the cooling effects of volcanic dust and sulfate aerosols have been underestimated.[41] They nevertheless conclude that even with an enhanced climate sensitivity to solar forcing, most of the warming since the mid-20th century is likely attributable to the increases in greenhouse gases.

A different hypothesis is that variations in solar output, possibly amplified by cloud seeding via galactic cosmic rays, may have contributed to recent warming.[42] It suggests magnetic activity of the sun is a crucial factor which deflects cosmic rays that may influence the generation of cloud condensation nuclei and thereby affect the climate.[43]

One predicted effect of an increase in solar activity would be a warming of most of the stratosphere, whereas an increase in greenhouse gases should produce cooling there.[44] The observed trend since at least 1960 has been a cooling of the lower stratosphere.[45] Reduction of stratospheric ozone also has a cooling influence, but substantial ozone depletion did not occur until the late 1970s.[46] Solar variation combined with changes in volcanic activity probably did have a warming effect from pre-industrial times to 1950, but a cooling effect since.[1] In 2006, Peter Foukal and other researchers from the United States, Germany, and Switzerland found no net increase of solar brightness over the last 1,000 years. Solar cycles led to a small increase of 0.07 percent in brightness over the last 30 years. This effect is too small to contribute significantly to global warming.[47][48] One paper by Mike Lockwood and Claus Fröhlich found no relation between global warming and solar radiation since 1985, whether through variations in solar output or variations in cosmic rays.[49] Henrik Svensmark and Eigil Friis-Christensen, the main proponents of cloud seeding by galactic cosmic rays, disputed this criticism of their hypothesis.[50] A 2007 paper found that in the last 20 years there has been no significant link between changes in cosmic rays coming to Earth and cloudiness and temperature.[51][52][53]


Temperature changes
Main article: Temperature record

Recent

Two millennia of mean surface temperatures according to different reconstructions, each smoothed on a decadal scale. The unsmoothed, annual value for 2004 is also plotted for reference.Global temperatures have increased by 0.75 °C (1.35 °F) relative to the period 1860–1900, according to the instrumental temperature record. This measured temperature increase is not significantly affected by the urban heat island effect.[54] Since 1979, land temperatures have increased about twice as fast as ocean temperatures (0.25 °C per decade against 0.13 °C per decade).[55] Temperatures in the lower troposphere have increased between 0.12 and 0.22 °C (0.22 and 0.4 °F) per decade since 1979, according to satellite temperature measurements. Temperature is believed to have been relatively stable over the one or two thousand years before 1850, with possibly regional fluctuations such as the Medieval Warm Period or the Little Ice Age.[citation needed]

Sea temperatures increase more slowly than those on land both because of the larger effective heat capacity of the oceans and because the ocean can lose heat by evaporation more readily than the land.[56] The Northern Hemisphere has more land than the Southern Hemisphere, so it warms faster. The Northern Hemisphere also has extensive areas of seasonal snow and sea-ice cover subject to the ice-albedo feedback. More greenhouse gases are emitted in the Northern than Southern Hemisphere, but this does not contribute to the difference in warming because the major greenhouse gases persist long enough to mix between hemispheres.[57]

Based on estimates by NASA's Goddard Institute for Space Studies, 2005 was the warmest year since reliable, widespread instrumental measurements became available in the late 1800s, exceeding the previous record set in 1998 by a few hundredths of a degree.[58] Estimates prepared by the World Meteorological Organization and the Climatic Research Unit concluded that 2005 was the second warmest year, behind 1998.[59][60] Temperatures in 1998 were unusually warm because the strongest El Niño-Southern Oscillation in the past century occurred during that year.[61]

Anthropogenic emissions of other pollutants—notably sulfate aerosols—can exert a cooling effect by increasing the reflection of incoming sunlight. This partially accounts for the cooling seen in the temperature record in the middle of the twentieth century,[62] though the cooling may also be due in part to natural variability. James Hansen and colleagues have proposed that the effects of the products of fossil fuel combustion—CO2 and aerosols—have largely offset one another, so that warming in recent decades has been driven mainly by non-CO2 greenhouse gases.

No comments: